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Modeling near wall effects in second
moment closures by elliptic relaxation

By D. Laurence I and P. Durbin 2

The elliptic relaxation model of Durbin (1993) for modeling near-wall turbulence

using second moment closures (SMC) is compared to DNS data for a channel flow
at Ret = 395. The agreement for second order statistics and even the terms in their

balance equation is quite satisfactory, confirming that very little viscous effects (via

Kolmogoroff scales) need to be added to the high Reynolds versions of SMC for
near-wall-turbulence. The essential near-wall feature is thus the kinematic blocking

effect that a solid wall exerts on the turbulence through the fluctuating pressure,

which is best modeled by an elliptic operator. Above the transition layer, the effect

of the original elhptic operator decays rapidly, and it is suggested that the log-

layer is better reproduced by adding a non-homogeneous reduction of the return to

isotropy, the gradient of the turbulent length scale being used as a measure of the

inhomogeneity of the log-layer. The elliptic operator was quite easily applied to the
non-linear Craft & Launder pressure-strain model yielding an improved distinction

between the spanwise and wall normal stresses, although at higher Reynolds number

(Re) and away from the wall, the streamwise component is severely underpredicted,
as well as the transition in the mean velocity from the log to the wake profiles. In

this area a significant change of behavior was observed in the DNS pressure-strain

term, entirely ignored in the models.

1. Introduction

Second moment closures have the ability to account exactly for turbulence "pro-

duction" terms due to shear, rotation and stratification, and to provide a better

description than eddy viscosity models of the Reynolds stresses--a corner stone for

complex flows involving heat transfer, two-phase flows, or combustion. However

they are mainly used by industry in their high Re form, since near-wall models are
both unsatisfactory and rather difficult to solve numerically.

Since the publication of the budgets of the Reynolds stresses in a channel flow

by Mansour, Kim & Moin (1988), a variety of near-wall second moment closures

have been proposed (see review of 9 models by So et al., 1990). Some of them were
more or less successful, but they are very seldom used outside low Reynolds number

channel flows. Most of them use damping functions to force homogeneous models

to comply with near wall turbulence features. A sound general principle is to avoid

explicit use of the distance to the wall; however, this tends to render the models
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rather difficult to converge numerically since the damping functions then depend

on parameters of the unknown solution (such as the turbulent Reynolds number

k2/¢v). Launder & Tselepidakis (1991), for instance, did a careful term by term fit

to each component of the Reynolds stress balance obtained by DNS, but the overall

model proved somewhat unstable especially when gravitational damping was added

(Laurence, 1993).

A common feature of these models is that all the terms (except diffusion) are

related algebraically to the local values of the solution. Such local representation

is in contradiction to the very large structures (hundreds of wall units) interacting

with the wall and inhomogeneity of the velocity profile.

In contrast to this previous approach, Durbin (1993) was able to reproduce quite

satisfactorily the features of near-wall flows by combining the very simple 'IP' ho-

mogeneous second moment clostu.e (Launder, Reece _z Rod.i, 1975) with a nonlocal

(elliptic) approach representing the wall blocking effect on the large eddies. The

present study was aimed at a closer comparison of the elliptic operator with DNS

budgets and an analysis of what could be gained by combining it with a more

sophisticated second moment closure (SMC).

The Craft-Launder (1991) cubic SMC, either in free flows or in combination

with wall functions or a low Re two-equation model, was shown to give better

predictions than the IP model in a variety of flows (round and plane jets, impinging

jets, tube bundles, swirling jets). A characteristic of near wall flows (also present in

shear flows) is the strong reduction of the normal stress compared to the spanwise

and longitudinal stresses. The Launder-Craft cubic model reproduces this effect

in free flows and to some extent in the log-layer of a channel flow (Launder and

Tselepidakis, 1991). Lee, Kim & Moin (1990) showed that many features of wall

flows are also present in high shear homogeneous flows, though not accounting

totally for the very high anisotropies in a near wall flow. Thus, our project was

motivated by the idea that by combining the cubic model with the elliptic operator,

to correctly acknowledge what is due to the high shear and what is due to the wall

blocking effect, an improved model would result.

2. Elliptic relaxation

Following the procedure developed by Durbin (1993) the Reynolds-stress trans-

port equation is written as:

Dtu-'TU'-i = Pii + Pii - uiui_ + Tij + uV2_iuj (1)

P_ = -u--_OkY, - u-_Ok U_

_.i = -u_aip - u_O_p - % + u,u_-_ (9.)

The term Pit differs from the usual pressure-strain ffij since it includes the mis-

alignment of the dissipation tensor and the Reynolds stress tensor:
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m m _= (3)
This unclosed term, called hereafter 'relaxed pressure-strain', is obtained by solv-

ing an elliptic equation:

L2V2 pi._.j.j=. Pij - P_j (4)
k k

For homogeneous turbulence pij in Eq. 4 reduces to p_j, for which any standard

redistribution model ¢_1 can be used:

h = ¢_j + dev (u--T_)e_, (5)P_j
£

where 'dev' is the deviatoric operator:

dev (u--7_) = uiu i - u_uk _ii/3
The simple 'IP' model uses the Rotta return to isotropy and the 'isotropization

of production'; i.e., the slow and rapid parts are modeled as:

oh -_. ¢ij, slow -[- ¢ij, rapid (6)

dev (u-'7_) k - C2 dev (Pij)

Durbin(1993) applied elliptic relaxation to the IP model with the following modifi-
cations which define what is called hereafter the 'R-linear model':

dev (u--_) C2 dev (Pij) (7)
p_j = -(C1 - 1) T

where the time scale is defined as:

T =max ,6 (8)

This time scale is also used in the dissipation equation in place of elk, preventing

a singularity at the wall. The length scale L appearing in (4) is also prevented from
going to zero at the wall using again a Kolmogoroff scale as a lower bound:

[k312 1/4]

Furthermore Eq. 4 is solved numerically by introducing an intermediate variable

fii = pij/k, and boundary conditions at the wall are imposed on the coupled

uiuj - fij equations.
Last, the Daiy-Harlow expression for the turbulent diffusion was used to model

Tij:

T,j = O, (C_, _t Tc3,,u--_ ) (10)
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3. Cubic order pressure-strain model

Defining the anisotropy tensor and its invariants as:

aij = dev(u-7_)/k, A2 = aijaii, A3 = aijajtaki, A = 1 - 9/S(A2 - Aa), (11)
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FIGURE 3. Balance terms of u'-_2;lines, R-cubic model; symbols, DNS; ........ , P_2;

.... Q, p22; _ _ , total diffusion; ----- o, dissipation.

the cubic pressure-strain model of Craft & Launder (1991) is written as:

_)rapid -- 0.6dev (Pij) + 0.3aijPk_ij =

. ,, ukuj ulul ,_ ,, uluk ,_ ,, (12)
-o.,t -_ _aok + Okut) - --T-_u,u_ot_j + u-S-_OtUi))

- r(A2(P,j - D_j) + 3amia_j(P_. - Dr.,.))

where: Dij = u-'7-,_ajU_ - uj_-_OiUk and

_b .m/.°uJ = -- (CI + 1)aije
'., (13)

- C_Cldev(aikakj) e

Thus the R-cubic model is defined with the following expression for p_j on the RHS

of (4):
t k d_rapi d (14)

_ = -C_(a_j + C_dev(o_ka_))_ + _,_

With the values:

C_ = 3.1[Amin(A2,0.6)] _/2, C_ = 1.2, r = 0.6

4. Low-Reynolds number channel flow

Figs. 1 & 2 show the Reynolds stresses compared to the DNS data at Re=395

(unpublished CTR simulation), as obtained by the relaxed cubic model and the

relaxed IP model, respectively. The u-_ component is slightly too close to the u]

component with the IP model. Both models predict a too steep decrease of u_ away
from the wall.
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Balance terms of u2_, R-linear model; captions as in Fig. 3.
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The budgets of the normal stress u2_ are given in Figs. 3 and 4 for the R-cubic and

R-linear models respectively. The dotted lines are the source term p/hi in Eq. 4; the
dashed line is the solution to Eq. 4 and provides the relaxed pressure-strain that

enters the solutions shown in Figs. 2 and 3. Note that by y+ _ 80, PO has relaxed
to _j. Figs. 3 and 4 are plotted on the same scale to show that the relaxed pressure-

strain terms are nearly identical even though the maximum of ¢22 at y+ -- 20 in the
homogeneous IP model is well out of range (0.11 in Fig. 4; i.e., 3 times that of the

cubic model). This demonstrates that the solution to the relaxation equation has

a large contribution coming through the boundary conditions. This blocking effect

gives adequate near-wall behavior despite serious inaccuracies of the homogeneous
model on the r.h.s of Eq. 4. The agreement with the balance terms obtained from

DNS is satisfactory. For this comparison the DNS data were processed as in Eq. 1,
in which Tij and _,V2_iuj are combined as total diffusion. Note that differences

between the 922 term and the corresponding DNS data are compensating for visible

defects in the diffusion model, Eq. 10. Since the u_ profile was seen to be quite
accurately predicted, the Daly Harlow model of turbulent diffusion needs to be
revisited.

Previous experience with the standard Launder-Tselepidakis model exhibited dif-

ficulties in solving the u_ balance because the normal stress component goes to zero

as y4 at the wall, while its balance terms remain large. In the form of Eq. 1, pressure
strain now balances most of the diffusion while the remaining dissipation is a small,
numerically stabilizing term. As y+ _ 0, the molecular diffusion balances the re-

laxed pressure-strain P22 - k f22, both of them going_t..o zero, which is precisely the

boundary condition imposed on the coupled system u_ - f22.

A slightly less satisfactory agreement is obtained for the budget of _ shown

in Fig. 5. The small overestimation of the normal stress seen in Fig. 1 results in
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FIGURE 6. Balance terms of u_, R-cubic model; captions as Fig. 5.

a visible overprediction of the production in the near wall layer, compensated by

a similar overprediction of the pressure-strain. Since the extent of agreement for
the latter is quite different depending on which component is examined, further

improvement could only be obtained by a tensorial correction whereas only global

coefficient tuning was undertaken here.
-"w

Fig. 6 shows the balance of the streamwise stress u21. The production term be-
comes dominant and the pressure-strain is now a small part of the budget. The

dissipation is quite well predicted. The e model equation is only changed from its
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standard high Re form by the use of T in place of k/_ (Durbin, 1993). The pro-

duction of dissipation needs to be slightly increased very near the wall. Hanjalic &:
Launder (1976) introduced an extra production term, proportional to the second

derivative of the mean velocity; but Rodi &: Mansour (1990) showed that such a

term was too strong below y+ -- 10. In the R-linear model production is enhanced
by modifying the production constant c_1 as:

P
c',1 = c,1 + a,- (15)

with al _ 0.1. The dissipation equation is then:

c' ' P (T +Ok (u+ _ (16)
o'e ]

A dependence on A2 was added in the present R-cubic model to make sure the

modification would have no effect on free shear flows, since A2 only attains values

near unity in the buffer layer where the turbulence becomes highly anisotropic:

c',, = c,, (1 + a_min(A2,1) 2P) (17)

The kink in eax near y+ = 10 is exaggerated but again compensates for a defect
in the diffusion model. Note that in (16) no damping function is needed before c_2

_2
since -_- has been replaced by _ which is finite.

The distribution of the various structure parameters used throughout the paper

are given in Fig. 7. The A2 parameter becomes very large below y+ = 30, character-

izing nearly 2-D turbulence and providing a means of isolating the transition layer,
whereas the ratio of production over dissipation reaches values of about 1.5, which

can also be found in free shear flows. The Rotta constant C1 from the Launder-

Craft model goes to zero at the wall, indicating that one might need a smaller
elliptic correction than the linear IP model. The difference c_2 - c_1 which can be

related to the von Karman constant is seen to be fairly constant in the log-layer.
We consider in Fig. 8 the split of ¢22 into the slow part and the rapid part modeled

by Eq. 12. The slow part (to which the quadratic component (s2) makes a small
contribution) is dominating the rapid part and is acting 'naturally' to reduce the

isotropy. The rapid part is determined largely by the linear term (the first term on

the r.h.s, of Eq. 12, which is referred to as rl in figure 8) since the second and third
terms (r2 and ra) seem to cancel each other. However, the model does not reduce

to the linear contributions to the slow and rapid part (sl and rl) (which is just the

IP model) because ra takes a positive ('natural') sign in the spanwise stress budget.

Also, in the shear stress budget r2 is now acting 'anti-naturally' and rs 'naturally',
as can be seen in Fig. 9.

Fig. 10 shows the velocity profile from the Rer = 395 DNS and the Comte-BeUot

(1965) experiment at Re,. = 2420 (Re = 57, 000). The latter when matched with

the standard log-law, U + = 1/tclog(y+) + C, gives an additive constant of C=7,
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which is unusually high but will serve here to emphasize the effect of CL in Eq. 9.

Models are usually calibrated to yield C=5.5 and _=.41 (dot-dashed line). The
constant C is known to have a Reynolds dependence and is related to the Van

Driest damping factor A+; i.e., it depends on the rate at which the shear stress

increases in the transition in the region 10 < y+ < 30, effectively accelerating the
mean flow. This also introduces a pressure-gradient dependence.

With the R-cubic model described up to now, a best fit with the log-profile was
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FIGURE 9. Split of ¢12 in the cubic model. Symbols as in fig. 8.

obtained with CL = 0.25. The homogeneous version of the cubic pressure-strain

model yields an overestimation of the slope of the velocity profile. Thus Launder-

Tselepidakis included a Gibson-Launder type of wall reflection (Eq. 24) to reduce

the pressure-strain return to isotropy. Alternatively, they introduced an effective
velocity gradient in the pressure strain model defined as:

VUi eli = VUi + celll(Vl • V)V(Ui), l - kl/2g"u" (18)

In the present 1-D problem, this is equivalent to:

OU ell OU I Ol 02U (19)

Or, since ¢ij,_ is linear in the mean shear:

¢_Yf = ¢ii,_ + cell 1
lJ,r oy

(20)

In the log-layer ¢ behaves as y-1 so the effect is to reduce ¢ii by a factor which can

be estimated using standard log-law assumptions as about 40%.

Note that this non-local effect could be incorporated in the relaxation operator
by replacing kL2V2P-e_-k in (4) by:

_ P_i L2V2 P_--A V-_V. (L V-T- ) = + 2LV(L) (21)

In the log region, if we assume Pij =¢ij, and neglect the effect of variations of k,

the first term on the RHS has the same sign as Pij thus increasing the return to
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¢_.[I (1. _ min[c_fI [ Ol _ 2 ),_, -- \_yy} ,.3] ¢ij,s (23)

The following combination:

c_11= .12, c_11= .1, CL = .15

yielded the more satisfactory agreement, increasing U in the transition layer and
slightly decreasing the slope of U further away from the wall in better agreement

with the log-law as shown by the dashed curve in Fig. 10. The solid line obtained

with CelIS = .12, c_II = .1, CL = .22 shows that in the present form, the relaxation
effect is limited to the transition layer, whereas in the R-linear model used without

Eqs. 22, 23, it also strongly affects the log-layer (Fig. 11).
The final form of the model at this stage and for which the results were shown

in Figs. 1-10 is thus the standard Craft-Launder model, with the elliptic relaxation
and the modifications in Eq. 22 and the values:

Ca, Cta C. fit Gk CL C_ al c_ f! c_ ff

1. f(A,A2) .23 1.3 1. .15 80. .2 .12 .1

FIGURE 10. Velocity profiles, R-cubic model.

= 0.15; -- , clef = 0.12, c2eff =0.1, cl = 0.22;
o , DNS; [], Comte-BeUot

isotropy (observed if Fig. 4 is plotted for y+ > 100) while the second term actually
reduces the return to isotropy, which is the effect sought by using wall echo terms.

This interesting idea, which avoids any explicit reference to the distance to the

wall, was for the time being retained in a simpler version as follows:

Ceil (I-min[c2 ff _ Ol _2 .3]) ¢,j,_ (22),,,, = . '
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FIGURE 11.
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while for the R-linear model used here the constants of Durbin (1993) were used:

Cel Ce 2 Ctt ae O'k eL Ct 1 al C1 C2

1.44 1.9 .23 1.65 1.2 .2 80. .1 1.22 0.6

Note that the pressure strain constant C1 is lower than the standard value; this

reduction could be avoided by using the gradient of the length scale as an inhomo-
geneity indicator. Also the following Gibson-Launder formulation,

(p_j = Cktnknt$ij -- 3/2¢ikn_n i -- 3/2¢jknkni, (24)

was not used with the Craft-Launder model since u_ is sufficiently suppressed by
the rapid term of the cubic model.

At Re=395, Fig. 12 shows that the R-linear and R-cubic predictions are almost

undistinguishable. The fact that all models known to the authors seem to under-

predict the increase in velocity in the central part of the channel (the wake region)
where they recover their homogeneous form is somewhat puzzling. The centerline

velocity (and more importantly, the skin friction in boundary layers) seems to be

recovered only at the expense of predicting a somewhat lower von Karman constant.

Considering the _ balance equation, neglecting diffusion and dissipation,

-_ OU
0 = - 2 -y + ¢12, (25)

m

one sees that with u] constant, the magnitude of the velocity gradient is allowed

to increase (relative to y-1 in the log layer) only if the pressure strain decreases

less than y-1. This is indeed the behavior of exhibited by the DNS data (Fig. 13)
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FIGURE 12.
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FIGURE 13. Budget of terms in the u2 equation near channel centerline, captions

as Fig. 4.

and seems to be ignored by the models. In fact the relative increase of the pressure
strain exceeds that of the production and is balanced by pressure diffusion. A

similar behavior was found for all Reynolds-stress budgets.

With the present gradient transport assumption, a zero value is predicted for

the total diffusion (pressure + turbulent) since ulu2 is linear, but non-zero pres-

sure diffusion might be accounted for by the non-local formulation investigated by

Demuren et al. in the present volume.
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Fig. 14 compares the Reynolds-stress distributions throughout the channel at high
Reynolds number (Comte-BeUot experiment Re = 57,000). One major drawback

is that u_ is severely underestimated. Experiments show an extension with Re of

the plateau region of the stress maxima (Antonia et al., 1992), whereas the models

follow this trend more moderately. This is a generic problem since the standard

high Re Gibson-Launder model with wall functions yields similar underestimations
away from the wall. One sees, however, that the R-cubic model reproduces a better

separation between normal and spanwise components than the R-linear model for

which this separation is limited to the log layer.

5. Other calculations

The skin friction was computed for a zero pressure gradient, boundary layer. The

R-cubic model overpredicts CI, which is related to the difficulty in predicting the
wake region in the centerUne of channel flow that was observed previously (Fig. 10).

The R-cubic model was also tested on the flow over a backward facing step but
without Eqs. 22-23 and yielded similar, if not less satisfactory, predictions in com-

parison to the R-linear model used by Ko & Durbin (1993).

Conclusion

The present study used the DNS results of a channel flow at Rer = 395 to confirm
that homogeneous, second moment closures can be quite easily made to comply with

near-wall turbulence characteristics by applying the elliptic relaxation procedure of

Durbin (1993). Physically, it models the blocking effect that the wall imposes on

the the fluctuating pressure, thus alleviating the need for Re dependent 'damping
functions'.
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It was found that the standard relaxation model produces a reduction of 'return

to isotropy' in the near wall layer (y+ < 80). This effect is essentially due to the
boundary conditions. In this region, the elfiptic relaxation is so strong that the
switch from a linear to a cubic pressure strain model had a nearly unnoticeable

effect on the budgets of the stresses. After imposing the elliptic relaxation these

budgets compare very well with the DNS data. An urgently needed improvement
concerns the Daly-Harlow turbulent diffusion term which was not studied here.

Further away from the wall, it seems that the strong inhomogeneity of the log-

layer has also a significant blocking effect, underestimated by the original elliptic
relaxation combined with the simple IP second moment closure. Using the Craft &

Launder model, the wall normal stress was better reproduced, but still insufficiently

to avoid further inhomogeneity corrections. This is the reason that the Gibson &
Launder 'wall echo' model was still required at significant distances from the wall.

In the latter, reference to the distance to the wall can be avoided by using the

gradient of the turbulence length scale as suggested by Launder & Tselepidakis,
and which could be included along with elliptic relaxation.

Outside the log-layer, the DNS data show a significant change in the behavior of

the pressure strain terms, which explains the increase of the velocity gradient, but is

not reproduced by the models. The latter seem to compensate for this omission by

overpredicting the slope in the log-layer. Near wall models are usually compared to
DNS data at low Re, but for practical applications more attention should be given

to higher Re flows, with the challenging feature that the profiles of the stresses show

a strong Re dependence (i.e., they do not collapse on plots scaled in wall units). In

particular the streamwise stress is severely underpredicted at high Re.
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